Animal Circulation

A. Organismal Circulation

Transport vs. cellular exchange – Consider the functions of circulatory mechanisms in animals and the issues of bulk transfer vs. cellular function.

Open vs. Closed Circulatory Systems – Using FIG. 42.2, consider the form and function of open and closed circulatory systems.

What makes open, open and closed, closed ?

Nature of fluids involved and where they reside (vessels / sinuses, etc…)

B. Structure and Function of Circulatory Systems (emphasis on vertebrates)

Concept of Systemic and Respiratory Circuits – Using FIG. 42.3, consider the major patterns of vertebrate circulatory systems.

What major factor effects the patterns of these circuits ?

Structure of Blood Vessels – Using FIG. 42.8, consider the similarities and differences in the anatomy of blood vessels.

Large arteries ➔ Smaller arteries ➔ Arterioles

Heart

Large veins ➔ Smaller veins ➔ Venules

Capillaries
Blood Flow in relation to Vessels – Using FIG. 42.10, consider how blood flow (velocity) varies in different vessels.

How does cross-sectional area of a pipe effect blood flow?

Why doesn’t this seem to happen as we go from arteries to capillaries?

Where the action is -- Capillaries – Using FIG. 42.11, consider the form and function of capillaries.

What cellular and molecular functions occur within capillaries?

C. The Nature of Blood

Blood is a connective tissue – Using FIG. 42.13, consider the constituents of blood and their functions.

Blood clotting is an important function – Using FIG 42.15, review a typical blood clotting process.

How does this represent a normal and critical function of blood?
Animal Respiration

A. Organismal Respiration

Bulk Transport vs. cellular exchange — Consider the functions of respiratory mechanisms in animals and the issues of bulk transfer vs. cellular function.

What is **ventilation**?

The role of respiration in bioenergetics is summarized in **FIG. 42.17**. Note how respiration is **linked to nutrition**!!!

B. Respiratory Mechanisms in Aquatic Environments

The Physical Environment — Important features of respiring in water are —

- Respiratory surfaces (gills) are constantly moist
- Temperature and other factors are stable
- Water holds less oxygen than Air
- Transfer of gases are slower (need ventilation mech.)

Gills — Review the forms and functions of gills — refer to **FIG.s. 42.19 and 42.20**

- Special ventilation mechanisms
- High Surface area to volume
- Countercurrent Systems
C. Respiratory Mechanisms in Terrestrial Environments

The Physical Environment – Important features of resiping in water are –

Respiratory surfaces would be desicated (must be internalized)

Temperature and other factors are unstable or extreme

Air holds more oxygen than Water

Transfer of gases is quick and ventilation easy

Tracheal Systems – Consider insects, which have tracheal systems rather than lungs. Refer to FIG. 42.21

Cutaneous Systems – Many vertebrates, especially those living at land / water interfaces, can use their skin capillaries for respiration. See HANDOUT.

Lungs – Most terrestrial vertebrates, as well as some invertebrates (spiders) have internal lungs. (Mammalian Example – FIGS. 42.22 to 42.26)

Overview of a respiratory system (vessels and sacs)
- Mammals
- Birds and Reptiles

What is ventilation (breathing) – the role of negative pressure
- Mammals
- Birds and Reptiles

Nervous / Endocrine control of breathing – it’s (almost) automatic
- Mammals
Respiration at the Cell and Tissue Level – how does it work?

Respiratory pigments (hemocyanin and hemoglobin) and their roles.

Partial pressures of oxygen and carbon dioxide in tissues/organs

Oxygen binding by hemoglobin – oxygen dissociation curves

Carbon dioxide binding by hemoglobin – conversion to other C-molecules