Comparing Control Charts With Estimated Parameters

Maria E. Calzada (calzada@loyno.edu)
Stephen M. Scariano (scariano@loyno.edu)
Loyola University New Orleans
January, 2007

Power point presentation posted on http://www.loyno.edu/~calzada
We will look at

- Shewhart mean and variance charts
- Exponentially Weighted Moving Average (EWMA) chart for mean and Shewhart variance chart
- Cumulative Sum (CuSUM) chart for mean and Shewhart variance chart
Preliminaries

When parameters are known, at time t we compute

$$Y_t = \frac{\sqrt{n}}{\sigma_0} (\bar{X}_t - \mu_0) \quad \text{and} \quad R_t = \frac{S_t^2}{\sigma_0^2}.$$
Letting
\[\delta = \left(\frac{\mu - \mu_0}{\frac{\sigma_0}{\sqrt{n}}} \right) \]
and
\[\gamma^2 = \frac{\sigma^2}{\sigma_0^2} \]

It turns out that
\[Y_t \sim N(\delta, \gamma^2), \]
and
\[\Pr[A < R_t < B] = \int_{(n-1)A/\gamma^2}^{(n-1)B/\gamma^2} h(x) \, dx, \]

where \(h(x) \) is the p.d.f. of the Chi-square distribution with \(n-1 \) degrees of freedom.
Preliminaries

When parameters are estimated, at time t we compute

\[Y_t = \frac{\sqrt{n}}{\hat{\sigma}_0} (X_t - \hat{\mu}_0) \quad \text{and} \quad R_t = \frac{S_t^2}{\hat{\sigma}_0^2}, \]

where the parameters are estimated from m retrospective in-control samples of size n.
Y_t can be re-written as

$$Y_t = \frac{1}{W_0} (\gamma Z_t + \delta - \frac{Z_0}{\sqrt{m}}),$$

where $W_0 = \frac{\hat{\sigma}_0}{\sigma_0}$, $Z_0 = \frac{\hat{\mu}_0 - \mu_0}{\sigma_0 / \sqrt{mn}} \sim N(0,1)$, and $Z_t = \frac{\bar{X}_t - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$.

The conditional pdf of Y_t given $W_0 = w_0$ and $Z_0 = z_0$

$$g_{y_t}(y_t \mid w_0, z_0) = \frac{w_0}{\gamma} \phi\left(\frac{w_0}{\gamma} y_t - \frac{\delta}{\gamma} + \frac{z_0}{\gamma \sqrt{m}}\right),$$

$$\Pr[A < R_t < B] = \int_{w_0^2(n-1)A/\gamma^2}^{w_0^2(n-1)B/\gamma^2} h(x)dx.$$
Joint (\bar{X}, S^2) Chart

When parameters are known, the process is declared out-of-control at $t>0$ if either

$$|Y_t| \geq M \text{ or } (R_t \leq A \text{ or } R_t \geq B).$$

When parameters are estimated, the process is declared out-of-control at $t>0$ if either

$$|Y_t| \geq M \text{ or } (R_t \leq A \text{ or } R_t \geq B).$$
Joint \((\text{EWMA}, S^2)\) Chart

At time \(t>0\), we have computed \(Y_t\) and \(R_t\), if parameters are known and \(Y_t\) and \(R_t\), if parameters are estimated. We further compute the EWMA statistic

\[
Q_t = (1 - \lambda)Q_{t-1} + \lambda Y_t, \quad Q_0 = u.
\]

The process is declared out-of-control when

\[
|Q_t| \geq h \quad \text{or} \quad (R_t \leq A \quad \text{or} \quad R_t \geq B).
\]
At time $t>0$, we have computed Y_t and R_t, if parameters are known and Y_t and R_t, if parameters are estimated. We further compute

$$
C_t^+ = \max \left\{ 0, Y_t + C_{t-1}^+ - k \right\}
$$

$$
C_t^- = \max \left\{ 0, -Y_t - k + C_{t-1}^- \right\},
$$

$$
C_0^+ = u, \quad C_0^- = v, \quad 0 \leq u, v < h.
$$
Joint \((CUSUM, S^2)\) Chart

The process is declared out-of-control as soon as

\[C_t^+ \geq h, \]
\[C_t^- \geq h, \]

or \((R_t \leq A \text{ or } R_t \geq B)\).
We need equations for the ARL and SDRL

Joint \((\bar{X}, S^2)\) Chart

Joint \((EWMA, S^2)\) Chart

Joint \((CUSUM, S^2)\) Chart
ARL and SMRL for
(EWMA, S^2) chart with known parameters

\[L(u, \delta, \gamma) = 1 + \frac{\Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L(t, \delta, \gamma) f_{Y_t} \left(\frac{t - (1 - \lambda)u}{\lambda} \right) dt, \]

\[L_2(u, \delta, \gamma) = 1 + \frac{\Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L_2(s, \delta, \gamma) f_{Y_t} \left(\frac{s - (1 - \lambda)u}{\lambda} \right) ds \]
\[+ 2 \frac{\Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L(s, \delta, \gamma) f_{Y_t} \left(\frac{s - (1 - \lambda)u}{\lambda} \right) ds. \]
ARL and SMRL

\[ARL_E(\delta, \gamma) = L(0, \delta, \gamma) \]
\[SMRL_E(\delta, \gamma) = L_2(0, \delta, \gamma) \]
\[SDRL_E(\delta, \gamma) = \left(SM_E(\delta, \gamma) - ARL_E(\delta, \gamma) \right)^{1/2}. \]
ARL and SMRL for (EWMA, S^2) chart with estimated parameters

We first develop conditional ARL and SMRL equations, given values of $W_0=w_0$ and $Z_0=Z_0$.

\[
L(u, \delta, \gamma \mid w_0, z_0) = 1 + \frac{\Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L(t, \delta, \gamma \mid w_0, z_0) g_y \left(\frac{t-(1-\lambda)u}{\lambda} \right) \mid w_0, z_0 \, dt.
\]

\[
L_2(u, \delta, \gamma \mid w_0, z_0) = 1 + \frac{\Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L_2(s, \delta, \gamma \mid w_0, z_0) g_y \left(\frac{s-(1-\lambda)u}{\lambda} \right) \mid w_0, z_0 \, ds
\]

\[
+ \frac{2 \Pr[A < R_1 < B]}{\lambda} \int_{-h}^{h} L(s, \delta, \gamma \mid w_0, z_0) g_y \left(\frac{s-(1-\lambda)u}{\lambda} \right) \mid w_0, z_0 \, ds.
\]
Unconditional Equations

\[L(u, \delta, \gamma) = \int_{-\infty}^{\infty} \int_{0}^{\infty} L(u, \delta, \gamma | w_0, z_0)f_w(w_0)\phi(z_0)dw_0dz_0, \text{ and} \]

\[L_2(u, \delta, \gamma) = \int_{-\infty}^{\infty} \int_{0}^{\infty} L_2(u, \delta, \gamma | w_0, z_0)f_w(w_0)\phi(z_0)dw_0dz_0. \]
$ARL_{EP} (\delta, \gamma) = L(0, \delta, \gamma)$

$SMRL_{EP} (\delta, \gamma) = L_2(0, \delta, \gamma)$

$SDRL_{EP} (\delta, \gamma) = \left(SM_{EP} (\delta, \gamma) - ARL_{EP} (\delta, \gamma) \right)^{1/2}.$
Numerical Results

Joint (Xbar, S²) chart

<table>
<thead>
<tr>
<th>γ = 1.0</th>
<th>m=20</th>
<th>m=50</th>
<th>m=100</th>
<th>Known</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ =</td>
<td>ARL</td>
<td>SDRL</td>
<td>ARL</td>
<td>SDRL</td>
<td>ARL</td>
</tr>
<tr>
<td>0</td>
<td>172.01</td>
<td>208.70</td>
<td>180.23</td>
<td>200.70</td>
<td>182.11</td>
</tr>
<tr>
<td>0.5</td>
<td>119.18</td>
<td>156.60</td>
<td>115.13</td>
<td>134.68</td>
<td>112.20</td>
</tr>
<tr>
<td>1</td>
<td>49.51</td>
<td>72.00</td>
<td>43.53</td>
<td>52.22</td>
<td>41.25</td>
</tr>
<tr>
<td>1.5</td>
<td>18.11</td>
<td>25.96</td>
<td>15.79</td>
<td>18.00</td>
<td>15.03</td>
</tr>
<tr>
<td>2</td>
<td>7.37</td>
<td>9.36</td>
<td>6.63</td>
<td>6.89</td>
<td>6.40</td>
</tr>
<tr>
<td>2.5</td>
<td>3.61</td>
<td>3.84</td>
<td>3.36</td>
<td>3.07</td>
<td>3.28</td>
</tr>
<tr>
<td>3</td>
<td>2.14</td>
<td>1.82</td>
<td>2.05</td>
<td>1.55</td>
<td>2.02</td>
</tr>
</tbody>
</table>

Joint (EWMA, S²) chart λ=.05, h=0.3963

<table>
<thead>
<tr>
<th>γ = 1.0</th>
<th>m=20</th>
<th>m=50</th>
<th>m=100</th>
<th>Known</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ =</td>
<td>ARL</td>
<td>SDRL</td>
<td>ARL</td>
<td>SDRL</td>
<td>ARL</td>
</tr>
<tr>
<td>0</td>
<td>105.88</td>
<td>133.45</td>
<td>132.15</td>
<td>145.48</td>
<td>148.84</td>
</tr>
<tr>
<td>0.5</td>
<td>36.63</td>
<td>56.91</td>
<td>29.25</td>
<td>29.60</td>
<td>26.85</td>
</tr>
<tr>
<td>1</td>
<td>11.41</td>
<td>7.40</td>
<td>10.81</td>
<td>4.95</td>
<td>10.64</td>
</tr>
<tr>
<td>1.5</td>
<td>6.84</td>
<td>2.62</td>
<td>6.73</td>
<td>2.24</td>
<td>6.68</td>
</tr>
<tr>
<td>2</td>
<td>4.99</td>
<td>1.51</td>
<td>4.95</td>
<td>1.36</td>
<td>4.93</td>
</tr>
<tr>
<td>2.5</td>
<td>3.97</td>
<td>1.03</td>
<td>3.95</td>
<td>0.95</td>
<td>3.95</td>
</tr>
<tr>
<td>3</td>
<td>3.33</td>
<td>0.78</td>
<td>3.32</td>
<td>0.72</td>
<td>3.32</td>
</tr>
</tbody>
</table>
Joint (Xbar, S²) chart

<table>
<thead>
<tr>
<th>δ</th>
<th>m=20 ARL</th>
<th>SDRL</th>
<th>m=50 ARL</th>
<th>SDRL</th>
<th>m=100 ARL</th>
<th>SDRL</th>
<th>Known ARL</th>
<th>SDRL</th>
<th>Parameteres</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>172.01</td>
<td>208.70</td>
<td>180.23</td>
<td>200.70</td>
<td>182.11</td>
<td>193.83</td>
<td>185.44</td>
<td>184.94</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>119.18</td>
<td>156.60</td>
<td>115.13</td>
<td>134.68</td>
<td>112.20</td>
<td>122.72</td>
<td>109.59</td>
<td>109.09</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>49.51</td>
<td>72.00</td>
<td>43.53</td>
<td>52.22</td>
<td>41.25</td>
<td>45.17</td>
<td>39.34</td>
<td>38.84</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>18.11</td>
<td>25.96</td>
<td>15.79</td>
<td>18.00</td>
<td>15.03</td>
<td>15.77</td>
<td>14.42</td>
<td>13.91</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7.37</td>
<td>9.36</td>
<td>6.63</td>
<td>6.89</td>
<td>6.40</td>
<td>6.23</td>
<td>6.21</td>
<td>5.69</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>3.61</td>
<td>3.84</td>
<td>3.36</td>
<td>3.07</td>
<td>3.28</td>
<td>2.85</td>
<td>3.22</td>
<td>2.68</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.14</td>
<td>1.82</td>
<td>2.05</td>
<td>1.55</td>
<td>2.02</td>
<td>1.47</td>
<td>1.99</td>
<td>1.41</td>
<td></td>
</tr>
</tbody>
</table>

Joint (CUSUM, S²) chart $k=.25$, $h=7.93$

<table>
<thead>
<tr>
<th>δ</th>
<th>m=20 ARL</th>
<th>SDRL</th>
<th>m=50 ARL</th>
<th>SDRL</th>
<th>m=100 ARL</th>
<th>SDRL</th>
<th>Known ARL</th>
<th>SDRL</th>
<th>Parameteres</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>115.34</td>
<td>136.78</td>
<td>139.73</td>
<td>146.96</td>
<td>154.99</td>
<td>154.78</td>
<td>185.17</td>
<td>177.28</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>40.56</td>
<td>61.25</td>
<td>32.13</td>
<td>33.06</td>
<td>32.13</td>
<td>33.06</td>
<td>27.11</td>
<td>16.20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12.20</td>
<td>8.07</td>
<td>11.48</td>
<td>5.25</td>
<td>11.28</td>
<td>4.71</td>
<td>11.12</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>7.22</td>
<td>2.75</td>
<td>7.08</td>
<td>2.33</td>
<td>7.03</td>
<td>2.21</td>
<td>6.00</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.23</td>
<td>1.57</td>
<td>5.18</td>
<td>1.41</td>
<td>5.16</td>
<td>1.36</td>
<td>5.14</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>4.14</td>
<td>1.07</td>
<td>4.12</td>
<td>0.98</td>
<td>4.11</td>
<td>0.95</td>
<td>4.10</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.46</td>
<td>0.80</td>
<td>3.45</td>
<td>0.74</td>
<td>3.44</td>
<td>0.72</td>
<td>3.44</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

While the (EWMA,S^2) and (CUSUM,S^2) charts offer very attractive out-of-control ARLs when process parameters are known, they suffer from a very disheartening increase in false-alarm rate when process parameters are estimated from small or moderated numbers of retrospective samples.
Conclusions

The \((Xbar, S^2)\) chart with estimated parameters, while not signaling out-of-control as fast as the other alternatives, is found to be more robust in terms of false-alarm rate.

Users of these charts must balance the need for out-of-control detection, the risk of false-alarm, and the effect of the number of retrospective samples on parameter estimation.
Selected References

• Quesenberry (1993), JQT 36, pp. 95-108.
• Chen (1997), Statistica Sinica 7, pp. 401-407.
• Jones (2001), Technometrics 34, pp. 277-288.
• Jones (2004), JQT 36, pp. 95-108.